- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Horowitz, Scott (2)
-
Ghosh, Kingshuk (1)
-
Huang, Zijue (1)
-
Joosten, Robbie P (1)
-
Khatib, Firas (1)
-
Petrides, Andreas C (1)
-
Players, Foldit (1)
-
Stull, Frederick (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many proteins have slow folding times in vitro that are physiologically untenable. To combat this challenge, ATP-dependent chaperonins are thought to possess the unique ability to catalyze protein folding. Performing quantitative model selection using protein folding and unfolding data, we here show that short nucleic acids containing G-quadruplex (G4) structure can also catalyze protein folding. Performing the experiments as a function of temperature demonstrates that the G4 reshapes the underlying driving forces of protein folding. As short nucleic acids can catalyze protein folding without the input of ATP, the ability of the cell to fold proteins is far higher than previously anticipated.more » « less
-
Petrides, Andreas C; Joosten, Robbie P; Players, Foldit; Khatib, Firas; Horowitz, Scott (, bioRxiv)Abstract Foldit is a citizen science video game in which players tackle a variety of complex biochemistry puzzles. Here, we describe a new series of puzzles in which Foldit players improve the accuracy of the public repository of experimental protein structure models, the Protein Data Bank (PDB). Analyzing the results of these puzzles showed that the Foldit players were able to considerably improve the deposited structures and thus, in most cases, improved the output of the automated PDB-REDO refinement pipeline. These improved structures are now being hosted at PDB-REDO. These efforts highlight the continued need for the engagement of the lay population in science.more » « less
An official website of the United States government
